Strongly k-Abelian Repetitions

نویسندگان

  • Mari Huova
  • Aleksi Saarela
چکیده

We consider with a new point of view the notion of nth powers in connection with the k-abelian equivalence of words. For a fixed natural number k, words u and v are k-abelian equivalent if every factor of length at most k occurs in u as many times as in v. The usual abelian equivalence coincides with 1-abelian equivalence. Usually k-abelian squares are defined as words w for which there exist non-empty k-abelian equivalent words u and v such that w = uv. The new way to consider k-abelian nth powers is to say that a word is strongly k-abelian nth power if it is k-abelian equivalent to an nth power. We prove that strongly k-abelian nth powers are not avoidable on any alphabet for any numbers k and n. In the abelian case this is easy, but for k > 1 the proof is not trivial.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Avoiding two consecutive blocks of same size and same sum over $\mathbb{Z}^2$

We exhibit an algorithm to decide if the fixed-points of a morphism avoid (long) abelian repetitions and we use it to show that long abelian squares are avoidable over the ternary alphabet. This gives a partial answer to one of Mäkelä's questions. Our algorithm can also decide if a morphism avoids additive repetitions or k-abelian repetitions and we use it to show that long 2-abelian square are...

متن کامل

Avoidability of long k-abelian repetitions

We study the avoidability of long k-abelian-squares and k-abeliancubes on binary and ternary alphabets. For k = 1, these are Mäkelä’s questions. We show that one cannot avoid abelian-cubes of abelian period at least 2 in infinite binary words, and therefore answering negatively one question from Mäkelä. Then we show that one can avoid 3-abelian-squares of period at least 3 in infinite binary wo...

متن کامل

Abelian Properties of Words

We say that two finite words u and v are abelian equivalent if and only if they have the same number of occurrences of each letter, or equivalently if they define the same Parikh vector. In this paper we investigate various abelian properties of words including abelian complexity, and abelian powers. We study the abelian complexity of the Thue-Morse word and the Tribonacci word, and answer an o...

متن کامل

Abelian powers and repetitions in Sturmian words

Richomme, Saari and Zamboni (J. Lond. Math. Soc. 83: 79–95, 2011) proved that at every position of an infinite Sturmian word starts an abelian power of exponent k, for every positive integer k. Here, we improve on this result, studying the maximal exponent of abelian powers and abelian repetitions (an abelian repetition is the analogous of a fractional power in the abelian setting) occurring in...

متن کامل

Abelian Repetitions in Sturmian Words

We investigate abelian repetitions in Sturmian words. We exploit a bijection between factors of Sturmian words and subintervals of the unitary segment that allows us to study the periods of abelian repetitions by using classical results of elementary Number Theory. If km denotes the maximal exponent of an abelian repetition of period m, we prove that lim sup km/m ≥ √ 5 for any Sturmian word, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013